
AND,

NASA TECHNICAL NOTE NASA TN D-7494
_j

¢44

I-

(NASA-TN-D-74
9 4 ) REMOVAL OF N74-22507SPACECRAFT-SURFACE PARTICULATE CONTABINANTS N74-22507BY SIMULAED MICBCMETEO OID IMPACTS (NASA)

-- P RC $3.25
30 CSCL 22B Unclas

H1/31 38193

REMOVAL OF SPACECRAFT-SURFACE
PARTICULATE CONTAMINANTS BY

SIMULATED MICROMETEOROID IMPACTS

by J. H. Goad, Jr., J. D. DiBattista,

D. M. Robinson, and W. P. Chu

Langley Research Center AoT'OLT&

Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION * WASHINGTON, D. C. * MAY 1974



1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA TN D-7494

4. Title and Subtitle 5. Report Date

REMOVAL OF SPACECRAFT-SURFACE PARTICULATE May 1974
CONTAMINANTS BY SIMULATED MICROMETEOROID 6. Performing Organization Code

IMPACTS

7. Author(s) 8. Performing Organization Report No.

J. H. Goad, Jr., J. D. DiBattista, D. M. Robinson, L-9269

and W. P. Chu . 10. Work Unit No.
9. Performing Organization Name and Address 975-72-51-03

NASA Langley Research Center 11. Contract or Grant No.

Hampton, Va. 23365

S13. Type of Report and Period Covered

12. Spontoring Agency Name and Address

National Aeronautics and Space Administration
14. Sponsoring Agency Code

Washington D.C. 20546 Technical Note

15. Supplementary Nots

W. P. Chu is a Research Associate Professor, School of Sciences, Old Dominion

University, Norfolk, Va.

16. Abstract

A series of hypervelocity impacts has been conducted in an exploding lithium-wire

accelerator to examine with a far-field holographic system the removal of particulate contami-

nants from external spacecraft surfaces subjected to micrometeoroid bombardment. The

impacting projectiles used to simulate the micrometeoroids were glass spheres nominally

37 gm in diameter, having velocities between 4 and 17 km/sec. The particulates were glass

spheres nominally 25, 50, and 75 pm in diameter which were placed on aluminum targets.

For these tests, particulates detached had velocities that were log-normally distributed.

The significance of the log-normal behavior of the ejected-particulate velocity distribution is

that the geometric mean velocity and the geometric standard deviation are the only two param-

eters needed to model completely the process of particles removed or ejected from a space-

craft surface by a micrometeoroid impact.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Contamination cloud Unclassified - Unlimited
Micrometeoroid impacts
Particulate contaminants
Velocity distribution
Far-field holography
Particulate shedding STAR Category 31

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 30 $3.25

For sale by the National Technical Information Service, Springfield, Virginia 22151

/



REMOVAL OF SPACECRAFT-SURFACE PARTICULATE CONTAMINANTS

BY SIMULATED MICROMETEOROID IMPACTS

By J. H. Goad, Jr., J. D. DiBattista, D. M. Robinson, and W. P. Chu*

Langley Research Center

SUMMARY

A series of hypervelocity impacts has been conducted in an exploding lithium-wire

accelerator at the Langley Research Center to examine with a far-field holographic system

the removal of particulate contaminants from simulated external spacecraft surfaces

subjected to micrometeoroid bombardment. The impacting projectiles used to simulate

the micrometeoroids were glass spheres nominally 37 Am in diameter, having velocities

between 4 and 17 km/sec. The particulates were glass spheres nominally 25, 50, and

75 pm in diameter which were placed on 127-pm-thick 6061-T6 aluminum targets. The

targets were cleaned with an ethyl-alcohol-impregnated cloth before particulate emplace-

ment and the targets were "vacuum soaked" for 1 hour at 6.6 Pa before impact.

For these tests, particulates detached from areas of 0.06, 1.00, and 10.00 cm 2

had velocities that were log-normally distributed. The significance of the log-normal

behavior of the ejected-particulate velocity distribution is that the geometric mean veloc-

ity and the geometric standard deviation are the only two parameters needed to model

completely the process of particles removed or ejected from a spacecraft surface by a

micrometeoroid impact.

INTRODUCTION

A problem which is being increasingly recognized as critical to successful space

flight is the contamination cloud which surrounds any spacecraft. This contamination

cloud results from spacecraft outgassing, dumping, and dislodgement of surface materials.

*Research Associate Professor, School of Sciences, Old Dominion University,

Norfolk, Virginia.
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The cloud can be composed not only of molecular gas species but of discrete particu-

lates as well (refs. 1 and 2). When windows and other optical elements become polluted

with particulates or when optical systems must observe through the contamination cloud,

the success of many experiments can be jeopardized. As an example from reference 3,

particulates can scatter sunlight into a spacecraft star tracker to present a false star

signal or cause a high background noise to destroy the signal from the star being tracked.

Since spacecraft optical systems and optical experiments are becoming more complex

and critical to mission success, data are needed to assess all the mechanisms that can

remove or transport particulates in the local spacecraft environment.

One such transport mechanism that may be encountered is micrometeoroid impact.

Bombardment by these small extraterrestrial hypervelocity particles can generate vibra-

tional waves that travel out to eject particulates that are adhering to the spacecraft

surface. The subsequent release of these particulates into the local spacecraft environ-

ment may then create the various problems outlined above. It is the purpose of this paper

to present the particulate velocities that can be achieved through laboratory simulation of

micrometeoroid impact. These velocities, when considered in the light of any body forces

present between the particulates and spacecraft, have a definite bearing on whether an

ejected particle leaves the vicinity of the spacecraft forever or remains in the vicinity of

the spacecraft perhaps to return to another position on the spacecraft.

In this experiment the micrometeoroid bombardment was simulated by accelerating

glass spheres in an exploding lithium-wire accelerator. This accelerator launches

projectiles nominally 37 Apm in diameter in the velocity range from 4 to 17 km/sec for

impact with targets seeded with glass-bead particulates nominally 25, 50, and 75 pm in

diameter. The characteristics of the particulate removal due to the impact were deter-

mined in a series of nine runs under varying experimental conditions. These included

both the size and areal density of the seeding particulates as well as the energy and

momentum values of the impacting projectiles. The ejected particulates were character-

ized as to number and velocity using a far-field holographic recording process. The

energy and momentum values of the impacting projectiles were obtained from the diameter

of the craters they made in the target and measurement of their in-flight velocities. The

analyzed results show the statistical velocity distribution of the particulate ejection

process and how it relates to such parameters as seeding size, area, and areal density

and to the energy and momentum of the projectiles which impacted the targets.
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SYMBOLS

d particulate diameter, pm

KC constant, 1.95 x 10 - 4

m projectile mass, g

P. penetration depth or crater radius, cm

R radial distance from impact site to the center of the seeded area,

x2 + y2 , mm

V velocity of impacting projectile, cm/sec

V' velocity of ejected particulates, cm/sec

V geometric mean velocity of particulates, cm/sec

x,y rectangular coordinates measured from center of seeded area on target, mm

x laser wavelength

Pm projectile density, 2.7 g/cm 3

1g geometric standard deviation

log-normal probability density

TARGET CHARACTERISTICS AND PREPARATION

The targets used in the impact tests were all of 6061-T6 aluminum, 127 gim thick,

16 cm square, and clamped on the edges. Before particulate deposition, the targets

were cleaned by orthogonal wipes with an ethyl-alcohol-impregnated linen cloth until no

visible residue was left on the target.
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The glass-bead particulates were deposited by sprinkling them on the target from a
distance of approximately 10 cm. This simulates as closely and conveniently as possible
the natural settling of particulates on spacecraft surfaces. The target area seeded in this
manner varied according to the particulate size to reduce the time required to read up
holographic and microphotographic data. For the 25-Mm-diameter particulates a

0.06-cm 2 area was seeded; for the 50-Mm-diameter particulates a 1.00-cm 2 area was
seeded. In both these cases microphotographs were made of the total seeded area to
obtain a particulate count. In the case of the 75-Mm-diameter particulates, three targets
were seeded - two having a 10.00-cm 2 seeded area and one having a 1.00-cm 2 seeded
area. For the 75-Mm-diameter case, a microphotograph and a corresponding particulate
count was made of only 1.00 cm 2 of the seeded area. The seeded targets were "vacuum
soaked" for 1 hour at 6.6 Pa prior to impact.

EXPLODING LITHIUM-WIRE ACCELERATOR

In order to impact particulate-seeded targets, an exploding lithium-wire accelerator
was used to launch glass-bead projectiles (nominally 37 Mm in diameter) in the velocity
range of 4 to 17 km/sec. In the exploding lithium-wire accelerator, energy stored in a
44-kJ capacitor bank is used to vaporize a lithium wire. The projectiles to be accelerated
are located on a Mylar disk located in front of the lithium wire. The vaporized lithium
vaporizes the Mylar and drag accelerates the projectiles to hypervelocity. The flight dis-
tance for the projectiles between the accelerator breech and seeded target is 5.5 m. To
ascertain launched projectile velocity, the accelerator is equipped with both a terminal-
impact flash particle detector and an in-flight particle detector (ref. 4).

Several tests were run without the glass projectiles striking the targets to assure
that lithium plasma from the explosion was not interfering with the experiments. Under
these conditions, both the posttest target microphotographs and the far-field holograms
revealed no particulate removal.

CALCULATION OF PROJECTILE ENERGY AND MOMENTUM

The projectile energy and momentum for each test is listed in table I. In all cases
except run 6, where only one impact occurred, multiple projectile impacts occurred on the
targets. Where multiple impacts occurred, the largest crater was assumed to have been
made by the projectile having the highest velocity and so on down to the smallest crater
which was associated with the slowest velocity. Using the following equation (see ref. 5*):

*In reference 5, V is given in km/sec and Kc, is 0.42.
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Po : Km 0 .352 1/6v 2 / 3
Po = Km U  m V

the mass of the impacting particle is found by

- P. - 1/0.352

m= Kap1/6V2/3
With the mass determined and the projectile velocity measured, the momentum and energy

can be determined. These data along with crater diameter and location are summarized

in tables II, III, and IV. As a check on this procedure, the calculated projectile masses

were compared to those initially loaded into the accelerator. The calculated masses

listed in the tables were always in the same mass range as those loaded for launch.

As can be seen from table I, the incident energy for all cases was between 2 and

11 mJ and the incident momentum was between 7 x 10 - 7 and 34 x 10 - 7 kg-m/sec. For all

the multiple-impact runs a single impact carrying the same energy can be roughly con-

sidered to have occurred on the order of 1 to 2 cm from the center of the seeded particu-

late area.

In run 6 where a single hypervelocity impact occurred, the impacting-particle

parameters were

Density = 2.7 g/cm 3

Velocity = 11 km/sec

Mass = 1.32 x 10- 7 g

Projectile diameter = 45 lim

Energy = 7.98 mJ

Momentum = 14.52 x 10 - 7 kg-m/sec

The radial distance from the impact site to the center of the seeded area R was

24.41 mm.

The posttest plate count and far-field holographic count of particulates given in

table I are usually within a factor of 2.5 which is good considering the difficulty of the

tests and the possibility of plate contamination or loss of beads during handling. However,

for runs 7 and 8, the posttest target particulate count was conducted on only 1 cm 2 but

the holographic count was done for particulates from several square centimeters.
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EXPERIMENTAL HOLOGRAPHIC DESCRIPTION

General

Far-field or Fraunhofer holography is an ideal technique to measure the parameters

of small high-speed particles (ref. 6). These parameters are size, velocity distribution,

and three-dimensional location. The parameters provide information for a complete

velocity analysis of particulate shedding or ejection from targets which have been impacted

by simulated micrometeoroids.

In the simplest far-field holographic arrangement, a single collimated laser beam

is used (see fig. 1(a)). Diffracted light waves from the object combine with the undif-

fracted light waves to form interference patterns which are recorded by the film plate as

a hologram. The developed plate is placed into a collimated laser beam and a recon-

struction of the object results at the original object-to-film-plate distance with the same

object dimensions (see fig. 1(b)). Therefore, we have a technique for recording and

sizing objects. Also, the original position of the object can be determined. This tech-

nique is used with small objects where the far-field condition can be satisfied (i. e., the

object-to-film-plate distance must be larger than d2 /X, where d is the object width

or diameter and X is laser wavelength). For example, if the object width or diameter

is 100 gm and a red laser is used, a spacing of 2 cm or greater is required between the

object and film plate.

Recording/Reconstruction Procedure

A description of the experimental procedure used to record and reconstruct the

holograms of the particulate shedding can be divided into four areas: (1) the holographic

recording geometry; (2) the light source and illuminating optics; (3) the synchronizing

electronics; and (4) the reconstruction geometry. Each of these areas will be discussed

briefly.

The recording arrangement used in this experiment to form the holograms is shown

as the "holocamera" in figure 2. As can be seen this geometry differs from the simple

collimated scheme outlined in figure 1. This variation is dictated primarily by the

physical constraints of the test chamber. The large window-to-target distance (approxi-

mately 50 cm) necessitated the use of auxiliary optics to transfer the target area closer

to the film plane. It has been shown (ref. 7) that signal-to-noise considerations in the

6



recorded hologram indicate that an object-to-film-plate distance of from I to 3 far-field

distances optimizes the reconstructed image (1 far-field distance is defined as d2 /X).

Therefore the optics were chosen to image the target area to satisfy this condition. In

this case an f/4, 40-cm focal length lens provided a 1:1 image and the total depth of field

examined ranged approximately from 1 to 5 far-field distances.

Illumination of the particle field was provided by a Pockels cell Q-switched ruby

laser. The laser output was mode controlled via an intracavity aperture (2.0 mm) and a

multielement etalon. The 2.0-mm-diameter output beam was expanded to 10 cm by a

diffraction-limited Galilean telescope resulting in a fully illuminated target area. The

energy available for hologram exposure was limited to 20 mJ and the pulse duration was

approximately 50 nsec. These laser-output parameters proved sufficient to expose the

photographic plate* and to "stop" the motion of the ejected particulates.

The time interval between projectile impact and holographic exposure is used to

determine the time of flight of the ejected particulates. The position of the ejected

particulates from the target is determined from the reconstructed hologram. Therefore,

the velocity of the particulates can be determined. Figures 2 and 3 show the complete

recording system installed on the accelerator.

Reconstruction of the holograms is done using a helium-neon laser. The optical

geometry, shown in figure 4, is the reverse of the recording geometry (i. e., the direction

of light propagation is opposite to that used during recording). This procedure is used in

order that the aberrations introduced in the recording and reconstructing steps are sym-

metrical (ref. 8). Enhancement of the reconstructed image is accomplished by two pro-

cedures. The first is the employment of optical filtering (ref. 9) in the Fourier transform

plane of the hologram illuminating lens (see fig. 4). Results of the enhancement procedure

can be seen in figure 5. This reconstruction of a typical hologram shows the ejected par-

ticles traveling from left to right. In figure 5(c), low-frequency background noise and

edge-diffraction effects have been removed with a combination of high-pass and directional

filters in the transform plane. The second is the use of a TV camera/monitor readout

system. The brightness/contrast controls in the TV readout have provided an added flexi-

bility in controlling the dynamic range of the holographic reconstruction (ref. 10). The

combined use of these two enhancement procedures facilitates the data interpretation.

*Film speed (to obtain a density of 0.5) = 50 ergs/cm2 ; Resolution = 2800 lines/mm.

7



HOLOGRAPHIC DATA ANALYSIS

From the holographic readout system described in the preceding sections, particu-

late parameters can be determined and the data analyzed. From these data, various

points regarding the nature of the particulate shedding process can now be determined.

For example, histograms of the ejected particulate count versus arithmetic sampling of

velocity intervals did not yield a normal probability distribution (see fig. 6). The same

data were plotted over equal-log sampling intervals and a skewed Gaussian profile resulted

as shown in figure 7. This profile indicates that the ejected-particulate velocities are

log-normally distributed (ref. 11). Also, since the particulate velocity is zero for the

particulates on the target, the log-normal distribution that is zero for zero particulate

velocity is the most representative and physically correct.

A more useful way to plot and examine log-normal data is to use a logarithmic

probability graph. The percent of all particulates with a velocity less than the stated

velocity is plotted versus the logarithm of the stated velocity. This is shown for run

number 8 in figure 8. True log-normal distributions represent a straight line on a loga-

rithmic probability graph as explained by Aitchison and Brown in reference 12. To

verify a mathematical model of log-normality, curve fitting techniques defined in refer-

ences 12 and 13 can be used to compare experimental data to the log-normal probability-

density equation. However, a logarithmic probability graph is accepted as indicating

statistical significance as discussed in references 11 and 12. When the data plotted on a

logarithmic probability graph is a straight line, the geometric mean velocity V and

geometric standard deviation ag can be easily obtained. The geometric mean velocity

V is the velocity at the 50 percent point on the plot. In reference 11 the geometric

standard deviation ag is given by

84.13% velocity 50% velocity
ag 50% velocity -15.87% velocity

The form of the log-normal probability-density equation is (refs. 11 and 12)

1 (loge V' - loge V)2

loge ag 2 exp 2 loge2 g
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The geometric standard deviation ag is related to the slope of the straight line on

the logarithmic probability graph. Also, it is a measure of the skewness (ref. 12) of the

log-normal probability-density equation when plotted over an arithmetic graph. Since all

experimental data points have some scatter, techniques must be used to obtain the best

straight line fit on the logarithmic probability graph. As in reference 14, the points

closest to the 50 cumulative percent should be heavily weighted as this is the peak of the

Gaussian profile when plotted on an equal-log interval graph. Also, most investigators,

as cited by Smith and Jordan in reference 11, attach strong significance only to the exper-

imental points between 20 to 80 cumulative percent.

Figures 9, 10, and 11 are plots of the measured particulate velocities where the

data points are fitted by straight lines on a logarithmic probability graph. From these,

the geometric mean velocity V and the geometric standard deviation 0 g were deter-

mined for all runs and listed in table I. The minimum geometric mean velocity was

3.2 cm/sec and the maximum was 13.5 cm/sec. This velocity spread was small but the

variation in the energy and momentum of the impacting projectiles was also small (see

table I). From the experimental data, the lowest velocity recorded was 0.52 cm/sec and

the highest velocity was 152 cm/sec.

From table I, it can be seen that the magnitude of the geometric mean velocity V

relates to the energy and momentumof the impacting projectile. In general, the larger

energy and momentum impacts proddce higher geometric mean velocities of the ejected

particulates. In addition, for the three different diameters of the seeding particulates,

the magnitude of the geometric mean velocities of the ejected particulates and the geo-

metric standard deviations were independent of the size and areal density of the seeding

particulates.

Figures 9, 10, and 11 would appear to indicate that the velocity distributions are

bimodal below the 20 to 30 cumulative percentage points. In this lower velocity region,

the target edge diffraction combines with the particulate diffraction to produce high noise

in the holographic recording. In figure 5, this can be seen close to the target surface.

Because of this noise effect, a single particulate not counted in this region of the plot is a

significant portion of the cumulative percent. Therefore, the bimodality can arise from

the experimental technique.

The significance of the log-normal behavior of the ejected-particulate velocity dis-

tribution is that the geometric mean velocity and the geometric standard deviation are the
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only two parameters needed to model completely the process of particles removed or

ejected from a spacecraft surface by a micrometeoroid impact.

CONCLUSIONS

A series of hypervelocity impacts has been conducted in an exploding lithium-wire

accelerator at the Langley Research Center to examine with a far-field holographic sys-

tem the removal of particulate contaminants from simulated external spacecraft surfaces

subjected to micrometeoroid bombardment. The impacting projectiles used to simulate

the micrometeoroids were glass spheres nominally 37 bpm in diameter, having velocities

between 4 and 17 km/sec. The particulates were glass spheres nominally 25, 50, and

75 Im in diameter which were placed on 127-Am-thick 6061-T6 aluminum targets.

Under the experimental conditions described in this paper, several conclusions

regarding the nature of the particulate removal or shedding process from micrometeoroid-

impacted spacecraft-type structures can be reached. First, the particulates that were

ejected from the targets had velocities that were log-normally distributed. The signifi-

cance of the log-normal behavior of the ejected-particulate velocity distribution is that

the geometric mean velocity V and the geometric standard deviation ag are the only

two variables needed to model completely the process of particles removed or ejected

from a spacecraft surface by a micrometeoroid impact. Second, the variables of the

log-normal distribution (i. e., V and ag) were independent of particulate size, areal

density, and seeded area for the size range tested. Finally, it may generally be stated

the larger the energy and momentum of the impacting projectiles the higher the geometric

mean velocities of the ejected particulate.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., February 4, 1974.
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TABLE I.- PROJECTILE AND PARTICULATE PARAMETERS

Particulate Impacting projectiles Beads removed Geometric Geometric
Run nominal Kinetic Posttest Far-field mean - standard

number diameter, energy, Momentum, ta t holraphic velocity, V, deviation
energy, kg-m/sec target holographic cm/sec deviation, ogAm mJ count count dio

1 25 2.07 8.8 x 10- 7  63 67 3.2 3.2

2 25 4.68 9.5 43 28 3.6 2.6

3 25 10.48 33.3 107 44 13.5 2.4

4 50 5.06 18.93 x 10- 7 90 88 8.5 2.6

5 50 5.99 13.23 113 120 10.6 3.0

6 50 7.98 14.52 26 42 7.4 2.2

*7 75 3.04 10.50 x 10- 7  15 38 3.4 2.3

*8 75 9.55 22.99 53 226 7.3 2.1

9 75 2.38 7.89 28 31 5.3 1.8

*Posttest bead count from target area of 1 cm 2 .



TABLE II.- TARGET AND PROJECTILE PARAMETERS FOR TESTS USING

PARTICULATES OF A NOMINAL DIAMETER OF 25 pm

Coordinates Calculated values forCrater Projectile of crater = projectile
diameter, velocity, R = + y ,

2PO, V, x, , mm Mass, Momentum, Energy,
cm km/sec mm mm g kg-m/sec mJ

Run number 1

0.00904 5.5 13.5 -18.0 22.5 0.63 x 10- 7  3.5 x 10-7 0.95

.00762 4.9 -3.0 15.0 15.3 .48 2.3 .58

.00534 3.7 22.0 -2.0 22.1 .28 1.0 .19

.00534 3.6 -8.5 -7.5 11.3 .30 1.1 .19

.00428 3.5 10.0 5.0 11.2 .18 .6 .11

.00334 3.2 13.5 -. 5 13.5 .10 .3 .05

Total 1.97 x 10 - 7  8.8 x 10-7 2.07

Run number 2

0.01048 10.4 -1.5 -7.0 7.1 0.29 x 10- 7  3.0 x 10- 7  1.57

.01048 10.0 -10.0 3.0 10.4 .31 3.1 1.55

.00952 9.1 7.5 5.0 9.0 .28 2.5 1.16

.00666 9.0 -1.0 9.0 9.0 .10 .9 .40

Total 0.98 x 10-7 9.5 x 10- 7 4.68

Run number 3

0.01382 7.7 -11.0 -6.0 12.5 1.12 x 10- 7  8.6 x 10 - 7  3.32

.01283 7.4 2.5 8.0 8.4 .98 7.2 2.68

.00858 5.5 -11.0 8.5 13.9 .55 3.0 .83

.00810 5.5 -11.0 3.0 11.4 .46 2.5 .69

.00762 5.0 -2.0 16.5 16.6 .47 2.3 .59

.00714 5.0 11.0 -5.0 12.1 .39 1.9 .49

.00714 5.0 -11.0 5.5 12.3 .39 1.9 .49

.00714 5.0 -1.0 .5 1.1 .39 1.9 .49

.00618 4.7 5.0 -8.5 9.8 .29 1.4 .32

.00618 4.7 14.0 9.0 16.0 .29 1.4 .32

.00428 4.2 6.0 -13.0 14.3 .13 .5 .11

.00428 4.2 -12.0 11.5 16.6 .13 .5 .11
.00286 3.5 1.0 -13.5 13.5 .06 .2 .04

Total 5.65 x 10 - 7 33.3 x 10- 7  10.48
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TABLE III.- TARGET AND PROJECTILE PARAMETERS FOR TESTS USING

PARTICULATES OF A NOMINAL DIAMETER OF 50 lim

Coordinates Calculated values for
Crater Projectile of crater y2 2 projectile

diameter, velocity, R = +
2P., V, x , mm Mass, Momentum, Energy,

cm km/sec mm mm g kg-m/sec mJ

Run number 4

0.01096 6.0 0 12.0 12.0 0.93 x 10 - 7  5.58 x 10- 7  1.67

.00810 5.6 2.0 -10.0 10.2 .45 2.52 .70

.00810 5.6 .5 3.0 3.04 .45 2.52 .70

.00714 5.5 -2.5 11.0 11.28 .32 1.76 .48

.00714 5.3 -5.0 17.0 17.72 .35 1.85 .49

.00666 5.1 10.5 9.0 13.83 .31 1.58 .40

.00524 4.4 7.0 18.5 19.78 .20 .88 .19

.00418 4.2 18.0 0 18.00 .13 .55 .11

.00418 4.2 11.5 6.5 13.21 .13 .55 .11

.00382 4.0 11.0 14.0 17.84 .10 .40 .08

.00334 3.8 2.5 -5.0 5.59 .08 .30 .06

.00334 3.4 12.0 14.0 18.44 .09 .31 .05

.00238 3.2 -3.0 -9.0 9.48 .04 .13 .02

Total 3.58 x 10 - 7 18.93 x 10 - 7  5.06

Run number 5

0.01096 17.0 -5.0 19.0 19.65 0.13 x 10-7 2.21 x 10 - 7  1.88

.00810 10.0 -7.5 -8.5 11.33 .15 1.50 .75

.00762 8.1 -. 5 6.0 6.02 .19 1.54 .62

.00714 7.2 2.0 -11.5 11.67 .19 1.37 .49

.00714 7.2 -5.0 3.0 5.83 .19 1.37 .49

.00714 7.2 -2.5 3.5 4.30 .19 1.37 .49

.00666 6.7 -5.0 3.5 6.10 .18 1.21 .40

.00618 6.6 -11.0 -11.0 15.55 .15 .99 .33

.00618 6.6 -8.5 11.5 14.30 .15 .99 .33

.00524 6.2 -5.0 -1.5 5.22 .11 .68 .21

Total 1.63 x 10 - 7 13.23 x 10- 7  5.99

Run number 6

0.01856 11.0 20.0 14.0 24.41 1.32 x 10-7 14.52 x 10-7 7.98
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TABLE IV.- TARGET AND PROJECTILE PARAMETERS FOR TESTS USING

PARTICULATES OF A NOMINAL DIAMETER OF 75 lim

Coordinates Calculated values for
Crater Projectile of crater R = x2 2+ A projectile

diameter, velocity, R =x + y2,
2P 0 , V, x, y, mm Mass, Momentum, Energy,
cm km/sec mm mm g kg-m/sec mJ

Run number 7

0.01096 7.3 -12.5 -9.0 15.40 0.65 x 10- 7  4.74 x 10 - 7  1.73

.00810 6.8 -22.5 -14.0 26.50 .31 2.11 .72

.00524 3.4 -18.0 -8.0 19.69 .33 1.12 .19

.00524 3.4 -26.0 -1.0 26.02 .33 1.12 .19

.00476 3.0 -10.0 -7.0 12.21 .31 .93 .14

.00334 3.0 -11.0 -1.5 11.10 .11 .33 .05

.00238 3.0 -10.0 -3.0 10.44 .05 .15 .02

Total 2.09 x 10- 7 10.50 x 10- 7  3.04

Run number 8

0.01286 10.3 -17.0 -1.5 17.06 0.53 x 10 - 7  5.46 x 10- 7  2.81

.01286 8.8 -5.0 -1.0 5.10 .71 6.25 2.75

.00952 7.8 -20.0 1.5 20.0 .38 2.96 1.15

.00764 7.8 26.0 13.0 29.0 .20 1.56 .61

.00762 7.8 -24.0 -9.5 25.8 .20 1.56 .61

.00714 7.5 -16.0 -13.5 20.9 .18 1.35 .51

.00618 6.6 -15.5 -10.5 18.72 .15 .99 .33

.00572 6.1 -14.5 0 14.50 .14 .85 .26

.00572 5.0 -9.5 -15.5 18.18 .21 1.05 .26

.00524 4.9 -5.5 -. 3 5.50 .17 .83 .20

.00286 4.5 -1.5 -1.0 1.8 .03 .13 .06

Total 2.90 x 10- 7 22.99 x 10- 7  9.55

Run number 9

0.01094 6.4 9.0 14.0 16.64 0.82 x 10- 7  5.25 x 10- 7  1.68

.00666 5.5 15.0 6.0 16.15 .27 1.48 .41

.00382 5.4 25.0 7.0 25.96 .06 .32 .09

.00334 4.8 22.0 5.0 22.56 .05 .24 .06

.00334 4.4 13.0 12.0 17.69 .06 .26 .06

.00286 4.3 23.0 7.5 24.19 .04 .17 .04

.00286 4.3 4.0 9.5 10.30 .04 .17 .04

Total 1.34 x 10- 7  7.89 x 10- 7  2.38
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Figure 1.- Typical construction and reconstruction

of a far-field hologram.
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Figure 2.- Block diagram of the far-field holographic system
installed on the target chamber of the exploding lithium-
wire accelerator.
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Particulate
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(a) Hologram. (b) Reconstruction. (c) Enhanced
reconstruction.

Figure 5.- Typical hologram of particulates of a nominal diameter of 75 [m

ejected from target by impacting projectiles. (Height of photographed

section is 1 cm.)
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